-
آرشیو :
نسخه تابستان 1399-جلد اول
-
نوع مقاله :
پژوهشی
-
کد پذیرش :
12335
-
موضوع :
موضوعی تعریف نشده!
-
نویسنده/گان :
سمانه غزالی
-
کلید واژه :
سبدگردانی انجمنی سهام، بورس اوراق بهادار تهران، کارایی میانگین- واریانس.
-
Title :
Evaluating the Efficiency of the Assets Portfolios of Food Industries Companies: Application of Portfolio Approach Based on Data Mining
-
Abstract :
The objective of this paper is applying the portfolio approach based on data mining, association asset portfolio (AAP), for food industries companies to strengthen mean- variance efficiency. 18 active companies are empirically chosen to analyze the asset portfolio efficiency of food industries in Tehran stock exchange. Required data was gathered daily in period of 2009- 2019. In order to discover association rules and evaluate efficiency, this period was divided into two periods comprising a mining period and an evaluating period. The mining period is for mining potential association rules of candidate assets, while the evaluating period is for evaluating mean- variance efficiency of asset portfolios. The findings of this study suggest that mining portfolio provide the four association rules between the assets of food industry companies, taking into account the minimum support and confidence criteria is respectively 0.15 and 0.90. As well as, association asset portfolio (AAP) has a larger sharpe ratio than correlation asset portfolio (CAP). Therefore, the AAPs outperform other traditional portfolio constructed by the Pearson's correlation model that provides a basket consisting two assets of Ghbeshahr and Ghmarg by correlation coefficient of 0.802. So, the mining association rules are useful for recommending candidate assets for food industrial investors, to help them establish efficient portfolios.
-
key words :
Association asset portfolio, Tehran stock exchange, Mean-variance efficiency
-
مراجع :
1) حسینی کاسگری، س.ه.، حسینی یکانی، س.ع.، عابدی، س. 1396. گزینش پرتفوی بهینه سهام شرکت¬های صنایع غذایی در بورس اوراق بهادار تهران با استفاده از روش پیش¬بینی ترکیبی: کاربرد الگوی میانگین- واریانس- چولگی. اقتصاد کشاورزی، جلد 11، شماره 4، 81-105.
2) فنایی، س.م. 1388. دانستنی¬های بورس و بازار سرمایه: تاریخچه و علل بوجود آمدن بورس اوراق بهادار. ماهنامه بورس، جلد 86، 74-79.
3) Bergin, P.R. and Pyun, J.H. (2016). International Portfolio Diversification and Multilateral Effects of Correlations. Journal of International Money and Finance, Vol. 62, No. 3, PP. 52-71.
4) Mueller, P., Stathopoulos, A. and Vedolin, A. (2017). International Correlation Risk. Journal of Financial Economics, Vol. 126, No. 2, PP. 270-299.
5) Lai, C.P. and Lu, J.R. (2018). Evaluating the Efficiency of Currency Portfolios Constructed by the Mining Association Rules. Asia Pacific Management Review, Vol. 23, PP. 1-10.
6) Liao, S., Lu, S. and Lai, Y. (2012). Mining the Hedge and Arbitrage of the Taiwan Foreign Exchange Market. Expert Systems with Applications, Vol. 39, No. 3, PP. 3197-3206.
7) Malliaris, M.E. (2012). Comparison of Currency Movement before and after October 2008. The Journal of Economic Asymmetries, Vol. 9, No. 2, PP. 45-57.
8) قدیری مقدم، ا.، رفیعی دارانی، ه. 1389. بررسي و تعيين پرتفوي بهينه سهام شركتهاي فعال صنايع غذايي بورس اوراق بهادار تهران. اقتصاد و توسعه کشاورزی، جلد 24، شماره 3، 304-309.
9) Paranjape-Voditel, P. and Deshpande, U. (2013). A Stock Market Portfolio Recommender System Based on Association Rule Mining. Applied Soft Computing, Vol. 13, No. 2. PP. 1055-1063.
10) Liao, S. and Chou, S. (2013). Data Mining Investigation of Co-movements on the Taiwan and China Stock Markets for Future Investment Portfolio. Expert Systems with Applications, Vol. 40, No. 5, PP. 1542-1554.
11) Kumar, B.S. and Ravi, V. (2016). A Survey of the Applications of Text Mining in Financial Domain. Knowledge-based Systems, Vol. 114, No. 3, PP. 128-147.
12) Agrawal, R., Imielinski, T. and Swami, A. (1993). Ming Association Rules between Sets of Items in Large Databases. ACM SIGMOD Record, Vol. 22, No. 2, PP. 207-216.
13) Agrawal, R. and Strikant, R. (1994). Fast Algorithms for Mining Association Rules in Large Databases. In Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile.
14) Markowitz, H.M. (1952). Portfolio selection. The Journal of Finance, Vol. 7, No. 1, PP. 77-91.
15) Markowitz, H.M. (1987). Mean-variance Analysis in Portfolio Choice and Capital Markets. Oxford, U.K: Basil Blackwell.
- صفحات : 113-125
-
دانلود فایل
( 985.91 KB )